Differential inhibition in vivo of ammonia monooxygenase, soluble methane monooxygenase and membrane-associated methane monoxygenase by phenylacetylene.

نویسندگان

  • S Lontoh
  • A A DiSpirito
  • C L Krema
  • M R Whittaker
  • A B Hooper
  • J D Semrau
چکیده

Phenylacetylene was investigated as a differential inhibitor of ammonia monooxygenase (AMO), soluble methane monooxygenase (sMMO) and membrane-associated or particulate methane monooxygenase (pMMO) in vivo. At phenylacetylene concentrations > 1 microM, whole-cell AMO activity in Nitrosomonas europaea was completely inhibited. Phenylacetylene concentrations above 100 microM inhibited more than 90% of sMMO activity in Methylococcus capsulatus Bath and Methylosinus trichosporium OB3b. In contrast, activity of pMMO in M. trichosporium OB3b, M. capsulatus Bath, Methylomicrobium album BG8, Methylobacter marinus A45 and Methylomonas strain MN was still measurable at phenylacetylene concentrations up to 1,000 microM. AMO of Nitrosococcus oceanus has more sequence similarity to pMMO than to AMO of N. europaea. Correspondingly, AMO in N. oceanus was also measurable in the presence of 1,000 microM phenylacetylene. Measurement of oxygen uptake indicated that phenylacetylene acted as a specific and mechanistic-based inhibitor of whole-cell sMMO activity; inactivation of sMMO was irreversible, time dependent, first order and required catalytic turnover. Corresponding measurement of oxygen uptake in whole cells of methanotrophs expressing pMMO showed that pMMO activity was inhibited by phenylacetylene, but only if methane was already being oxidized, and then only at much higher concentrations of phenylacetylene and at lower rates compared with sMMO. As phenylacetylene has a high solubility and low volatility, it may prove to be useful for monitoring methanotrophic and nitrifying activity as well as identifying the form of MMO predominantly expressed in situ.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential Transcriptional Activation of Genes Encoding Soluble Methane Monooxygenase in a Facultative Versus an Obligate Methanotroph

Methanotrophs are a specialized group of bacteria that can utilize methane (CH₄) as a sole energy source. A key enzyme responsible for methane oxidation is methane monooxygenase (MMO), of either a soluble, cytoplasmic type (sMMO), or a particulate, membrane-bound type (pMMO). Methylocellasilvestris BL2 and Methyloferulastellata AR4 are closely related methanotroph species that oxidize methane v...

متن کامل

Microbial Oxidation of Hydrocarbons: Properties of a Soluble Methane Monooxygenase from a Facultative Methane-Utilizing Organism, Methylobacterium sp. Strain CRL-26.

Methylobacterium sp. strain CRL-26 grown in a fermentor contained methane monooxygenase activity in soluble fractions. Soluble methane monooxygenase catalyzed the epoxidation/hydroxylation of a variety of hydrocarbons, including terminal alkenes, internal alkenes, substituted alkenes, branched-chain alkenes, alkanes (C(1) to C(8)), substituted alkanes, branched-chain alkanes, carbon monoxide, e...

متن کامل

Kinetic characterization of the soluble butane monooxygenase from Thauera butanivorans, formerly 'Pseudomonas butanovora'.

Soluble butane monooxygenase (sBMO), a three-component di-iron monooxygenase complex expressed by the C(2)-C(9) alkane-utilizing bacterium Thauera butanivorans, was kinetically characterized by measuring substrate specificities for C(1)-C(5) alkanes and product inhibition profiles. sBMO has high sequence homology with soluble methane monooxygenase (sMMO) and shares a similar substrate range, in...

متن کامل

Pacific Northwest marine sediments contain ammonia-oxidizing bacteria in the beta subdivision of the Proteobacteria.

The diversity of ammonia-oxidizing bacteria in aquatic sediments was studied by retrieving ammonia monooxygenase and methane monooxygenase gene sequences. Methanotrophs dominated freshwater sediments, while beta-proteobacterial ammonia oxidizers dominated marine sediments. These results suggest that gamma-proteobacteria such as Nitrosococcus oceani are minor members of marine sediment ammonia-o...

متن کامل

Particulate methane monooxygenase genes in methanotrophs.

A 45-kDa membrane polypeptide that is associated with activity of the particulate methane monooxygenase (pMMO) has been purified from three methanotrophic bacteria, and the N-terminal amino acid sequence was found to be identical in 17 of 20 positions for all three polypeptides and identical in 14 of 20 positions for the N terminus of AmoB, the 43-kDa subunit of ammonia monooxygenase. DNA from ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental microbiology

دوره 2 5  شماره 

صفحات  -

تاریخ انتشار 2000